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Abstract

The interaction of a piezoelectric screw dislocation with an interphase layer between the circular inclusion and
the piezoelectric matrix is dealt with. An efficient method for multiplying connected region is developed by combin-
ing the sectional holomorphic function, Cauchy-type integral and Laurent series expansion techniques, in terms of
which the relation among the complex potentials for the three material regions is obtained. The functional equation in
complex potentials for the interphase layer is derived, resulting in explicit series solutions for the two cases when
piezoelectric screw dislocation is located in the matrix or in the inclusion. The image force acting on the piezoelectric
screw dislocation is calculated by using the generalized Peach—Koehler formula. Three practical cases are provided to
investigate the influence of the interphase layer parameters on the image force. The present solutions contain a number
of novel and previously known results which can be shown to be special cases.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The solution of the appropriate problem involving the interaction of dislocations with inclusions plays a
fundamental role in many practical and theoretical applications, namely, it increases the understanding of
material defects thereby providing valuable insight into the mechanical behavior of materials (Sudak,
2003a). All materials of engineering importance, from quenched and tempered steels to fiber or laminated
reinforced composites, are heterogenecous systems. The second phase inclusions or dispersed particles
provide barriers to the dislocation motion and thus affect the flow stress and strain hardening behavior of
the materials. With the daily emerging of new material systems, theoretical analysis becomes increasingly
valuable. In addition, it can be used to study the crack growth in composites, as well as strengthening and
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hardening mechanisms in alloyed materials. In view of its importance, a number of contributions have been
conducted on this problem during the last several decades, and the references listed herein (Dundurs and
Mura, 1964; Dundurs and Sendeckyj, 1965; Barnett and Tetelman, 1966; Smith, 1968; Sendeckj, 1970; Luo
and Chen, 1991; Gong and Meguid, 1994; Zhang and Qian, 1996; Xiao and Chen, 2000, 2001, 2002; Wang
and Shen, 2002; Sudak, 2003a; Liu et al., 2003; Jiang et al., 2003; Fang et al., 2003) are just some examples
of contributions in this area.

In recent years, piezoelectric materials have become an important branch of modern engineering
materials due to the fact that they have potentials for use in many modern devices and composite structures.
Their favorable electromechanical coupling effect presents a level of difficulty not found in designs and
analyses of mechanical behaviors of composite materials. The electroelastic interaction of dislocations and
inclusions plays a significant role in studying the electromechanical coupling behavior of piezoelectric
materials, and it is motivated rapidly in the fields of solid mechanics and materials science. As a result, a
considerable amount of attention has been paid to this problem. Kattis et al. (1998) investigated the
electro—elastic interaction effects of a piezoelectric screw dislocation with circular inclusion in piezoelectric
material. Meguid and Deng (1998) and Deng and Meguid (1999) considered the problem involving the
interaction between the piezoelectric elliptical inhomogeneity and a screw dislocation, which is located
inside or outside inhomogeneity under antiplane shear and in-plane electric field. The interaction between a
piezoelectric screw dislocation and elliptical inclusion is studied by Liu et al. (2000). Huang and Kuang
(2001) evaluated the generalized electromechanical force when the dislocation locates inside, outside or on
the interface of the elliptical inhomogeneity in a infinite piezoelectric media. The electroelastic interaction
between a piezoelectric screw dislocation, which is located either outside or inside inhomogeneity and
circular interfacial rigid lines under antiplane mechanical and in-plane electrical loads in linear piezoelectric
materials, is dealt with by Liu and Fang (2003).

In the above studies involving the electroelastic interaction of the dislocation with the inclusion in
piezoelectric solids, most analytical solutions are restricted to two-phase model, namely, the interfaces are
assumed as idealized ones with zero thickness. Due to the presence of materials such as fiber coating or
transitional layers between the inclusion and the matrix, it is more reasonable to regard an interface as
interphase layer with finite thickness. The importance of three-phase model (inclusion-interphase-matrix
model) in piezoelectric materials has been described by Sudak (2003b). Referring to the work by Liu et al.
(2003), this paper will focus on the electroelastic interaction of a piezoelectric screw dislocation with an
interphase layer between the circular inclusion and the infinite matrix.

The complex potentials (Muskhelishvili, 1975) are used to deal with the problem. For a three-phase
model (such as inclusion-interphase-matrix model), under remote homogeneous stress and electric fields,
closed form solutions can often be obtained (see, for example, Wang and Shen, 2001; Jiang et al., 2001;
Sudak, 2003b). However, for problems with singularities, mathematical difficulties are encountered. In this
paper an effective method for multiplying connected region is developed by combining the sectional holo-
morphic function, Cauchy-type integral and Laurent series expansion techniques. The relation among
the complex potentials for the three material regions is given and the functional equation in complex
potential for interphase layer is derived, resulting in explicit series solutions for the two cases when
the piezoelectric screw dislocation is located in the matrix or in the inclusion. The image force acting on the
piezoelectric screw dislocation is calculated by using the generalized Peach—Koehler formula. Finally, the
influence of the interphase layer parameters (electroelasticity modulus, thickness) on the dislocation force
is examined for three practical cases. Results presented in this paper contain the previous known solutions
as special cases. The obtained explicit solutions can be used as Green’s functions to solve the problem of
electroelastic interaction between the coated inclusion and the arbitrary shape crack inside the matrix or
the inclusion.
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2. Problem statement and basic formulation

Let us consider an infinite piezoelectric medium containing a circular inclusion and an annular interphase
layer, as shown in Fig. 1, where R; and R, are the inner and outer radii of the interphase annulus. The matrix,
inclusion and interphase layer are assumed to be transversely isotropic piezoelectric media which have been
poled along the z-direction with an isotropic xoy-plane. A piezoelectric screw dislocation b = {5., b(,,}T (Pak,
1990; Liu et al., 2000) is located at arbitrary point zy, which is located either in the matrix or in the inclusion
(zo 1s plotted in the matrix in Fig. 1). Where an interface exists between two dissimilar materials, we assume
perfect bonding. Additionally, we assume no mechanical and electric loads at infinity.

For the present problem, out-of-plane displacement and in-plane electric field need to be considered, so
that there are only non-trivial displacement w, strains y,. and y,,, stresses 7. and ., electric potential ¢,
electrical field components E, and E, and electric displacement components D, and D, in the local Cartesian
coordinates. All components are only functions of x and y. The mechanical and electric coupled constitutive
relations (Tiersten, 1969) can be expressed as:

ow 0 ow 0
TXZZC446_x+8156_§? T, = C44§+€156—$ (1)

ow 110 ow Gl7)
D.=es——di— D,=es——di— 2
€15 ox 11 ox ) €15 ay 11 ay ( )

where Cy4 is the longitudinal shear modulus at a constant electric field, e;s is the piezoelectric modulus, dy; is
the dielectric modulus at a constant stress field.
The equilibrium equation and charge equation can be reduced to the harmonic equations

Viw=0 V=0 (3)

where V2 = 02 /dx* + 0% /0y” is the two-dimensional Laplace operator.
Referring to the work by Jiang et al. (2001), we introduce the vector of generalized displacement

U= { :; } Substituting it into Eq. (3), we obtain

\ Ao

Fig. 1. A piezoelectric screw dislocation interacting with the inclusion and interphase layer.
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VU =0 )

Introducing the following vectors of generalized stress and strain:

== {5y 2= {5} .
ey v ©

By adopting the above notations and noting E; = —¢,;, Eqgs. (1) and (2) can be unified into

X, =MY, X, =MY, (7)
where M = [CM é1s ]
e;s —du

Eq. (4) shows that the general solution of the generalized displacement vector U can be expressed by a
generalized analytical function vector f(z), where z = x + iy is the complex variable.

U = Ref(z) (8)
where Re denotes the real part of the complex function, and
fiu(2) }
fz) = 4" 9
=156 ©)

fw(z) and f,(z) are conventional analytical functions.
Considering Eq. (8), the constitutive relations Eq. (7) can be expressed as

X, —iX, = MF(z) (10)
where F(z) = f'(z) and the superscript prime denotes derivative with respect to argument z.

Hence, the mechanical stresses and the electric displacements can be expressed in terms of f,,(z) and f,(z)
as follows:

Ty — i1y, = Cuaf(z) + el5f(;(z) (11)

D, — D, = eisf,(z) — diif,(2) (12)

In order to facilitate the analysis, we introduce the following function vector:
B
T [ (®dy- 5o = Mlmie(z)} (13)
A

where [~]i is the change in the bracketed function vector in from point A to point B along any arc AB (not
pass through interfaces of dissimilar phase).

The assumption of perfect bonging between two adjacent materials implies the continuity of generalized
displacement and stress vectors across the interface, which leads to the following continuity conditions:

T,=T, U =U, onlf|=R, (14)

T2:T3 U2:U3 on |l| :R2 (15)

where and hereafter the subscripts 1, 2 and 3 refer to the inclusion, the interphase layer and the matrix,
respectively.

For the convenience of analysis, the following new analytical function vectors are introduced in the
corresponding region according to the Schwarz symmetry principle.
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f.(z) = —f,(R}/z) for |z| >R, (16)
f.(z) = 1, (R} /z) for Ri/Ry <|z| <R, (17)
f2..(z2) = —12(R3/z) for R, <|z| < R3/R, (18)
f3.(z) = —f3(R3/z) for |z <R, (19)

where the overbar represents the complex conjugate.

3. Piezoelectric screw dislocation inside the matrix

Let us first analyze the singularities of the complex function vectors. If a piezoelectric dislocation is
located in the matrix, referring to Pak (1990) and Liu et al. (2000), the generalized analytical function vector
f3(z) in the matrix can be chosen as:

1
f3(Z) = 2—mbln(z — Z()) + f3()(Z) |Z| >R, (20)

where the first term represents the complex potential for a piezoelectric screw dislocation in an infinite
matrix in the absence of the inclusion; the second term represents the disturbance of the complex potential
due to the presence of a circular inclusion and an interphase layer. The second term f3y(z) is holomorphic in
the region |z| > R,. From Eq. (19), it is seen that

1 R3
f’;*(Z) :%bln(f—%> +f3*0(2) |Z‘ <R, (21)

where f3.9(z) is holomorphic in the defined region.
Neglecting the constant terms denoting the rigid displacement and equipotential field, function vector
f,(z) can be expanded into Laurent series in the annular region:

f2(z) = Gy(2) + Gp(z) for R, <|z| <R (22)
with Gy(z) = Y12 az D and Gp(z) = >0 biz".
The substitution of Eq. (22) into Egs. (17) and (18) yields:
f2.(z2) = —Gy(R}/z) — Gp(R3/z) for RI/R, < |z| <R, (23)

f1..(z) = —Gy(R%/z) — Gp(R3/z) for R, < |z| < R3/R, (24)

Obviously, fi(z) is holomorphic in the region |z| < Ry, and from Eq. (16), f.(z) is holomorphic in the
defined region.
The substitution of Eq. (13) into the first equation of Egs. (14) and (15) yields:

M, |_f1 (f) —f; (t)J =M, sz([) — fz([)J on |[| =R (25)

My [£5(t) — £2(1) | = Ms[f3(r) — £5(1)]  on [1] =R, (26)

Noting that # = R} on [t| = R, and # = R3 on 1| = R,, and using Egs. (16)-(19), Eqgs. (25) and (26) can be
rewritten as:

[Mof,, (1) — My, (£) + Msfs, (0)]' = [Mif.(£) — Mafs(£) + Msfs. (1)]"  on |t = R, (27)
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[M\f1, (1) — Mafs(2) + Msfs, (1)]" = [Mafa,, (1) — Mt (c) + Myf, (O] on [t| =R, (28)

where the superscript I, L and M refer to the function value as approached from the regions occupied by the
inclusion, the interphase layer and the matrix, respectively. Eqgs. (27) and (28) imply that
[szz*(z) — M1f1 (Z) +M3f3*(2)], [M]fl*(Z) — szz(Z) +M3f3*(2)] and [szz**(z) — M3f3(Z) + M]fl*(Z)] are the
mutual direct analytical continuation, and they can be expressed by a continuous function vector fr(z):

szz*(Z) — M f, (Z) + Msfs, (Z) R%/Rz < ‘Z| < R
fT(Z) = lel*(Z) — szz(Z) +M3f3*(2) R, < |Z| <R, (29)
szz**(Z) — M3f3(Z) + lel*(Z) R2 < |Z| < R%/Rl
Similarly, substituting Eq. (8) into the second equation of Egs. (14) and (15) and considering Egs. (16)—(19),
we obtain the expression of continuous function vector fy(z):
fl (Z) + fz*(Z) + f:;*(Z) R%/Rz < |Z| < Rl
fU(Z) = fl*(Z) + fz(Z) -+ f3*(Z) R < |Z‘ <R (30)
fl*(Z) + fz**(Z) + f3(Z) R, < |Z‘ < R%/Rl
Noting Egs. (29) and (30) and defining

- M3f3*(2) 7M1f1(2) |Z| < R%/Rz
“@{Mm@—Mm@ o] > R2/R: (31)

_ [ fi(@) +15.(2) |zl <R}/R,
=L e A -

where f7(z) and f;(z) are two sectional analytical function vectors with the contours as shown in Fig. 2 and
the boundary conditions:

0 -t = {4 1= Rk )

AORIACRS $ s (34)

where the superscript + and — represent the function vectors boundary values as approached from regions
St and S~, respectively, as shown in Fig. 2.

Ay
! \
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Fig. 2. Internal boundaries for the sectional analytical function vectors.
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Now the problem is reduced to the boundary value problem of two sectionally analytical function
vectors fr(z) and fy(z).
By using Egs. (20)—(24), Egs. (33) and (34) can be expressed as follows:

—My[Gy (R /1) + Gp(RY/1)] + MsBIn(R}/t — 5) 1| = R}/R,

£1,(t) —1,(t) = { il il 35
ro() = fro(() —M;[Gy(R2/t) + Gp(R2/t)] — MzBln(t — z) |t| = R3/R, (33)
and
f+m_fm:{@@ﬁm+§wwm+Bm%ﬁm 1 = R/Rs 56
o v —[Gn(R3/1) + Gp(R3/1)] + Bln(t — zo) || = R3/Ry
where B =55b = ZZ
From Eq. (35), fro(z) can be represented by the Cauchy integrals:
1 —Mo[Gy (R}/1) + Gp(R}/1)] + MsBIn(R3 /1 — Z)
fr0(z) = 5= de
2mi M:R%/Rz t—z
2mi M:Rg/Rl t—z

where the integration contours for the above Cauchy integrals are shown in Fig. 2.
According to Muskhelishvili (1975), Cauchy integrals on the right hand side of Eq. (35) can be integrated
in closed form:

fT()(Z) = M3f3*0(2) — M1f1 (Z) = MzG_N(R%/Z) - MzG_N(Rg/Z) - MgBlIl(Z - Z()) |Z‘ < R%/Rz (38)
fTo(Z) = szz* (Z) - lel (Z) + M3f3* (Z) = lel*(Z) - M2f2 (Z) + M3f3* (Z)
= Myf,..(2) — Msf3(2) + Mif1.(z)
= —M,Gp(R}/z) + M3BIn(R; )z — Z5) — MyGy(R3/z) — MiBIn(z — z) R}/Ry < |z| < R3/R,
(39)
fT()(Z) = lel*(Z) - M3f30(2) = _MQG—P(R%/Z) +M2G_P(R%/Z) + M3B11’1(R§/Z - Z_()) |Z| > R%/Rl (40)

Similarly, Eq. (36) leads to

(P2 = (p2 2/, —
fuolz) = L / [Gy(R}/t) + Gp(R}/1)] + BIn(R3/t — %) dr
2mi M:R%/RZ t—z
G (R G.(R2 _
L1 (G (R/0) + Go(R3/)) + BIn(r —=0) )
27[1 M:Ré/Rl t—z
Further,
fuo(z) = f3.0(2) + f1(2) = Gy(R}/2) — Gy(R3/z) + Bln(z — z))  |z| < R}/R, (42)

fuo(z) = f2.(2) +£1(2) + £5.(2) = 11.(2) + £2(2) + £3.(2) = f2..(2) +£3(2) +F1.(2)
= —Gp(R}/2) +BIn(R3/z — Z5) — Gy(R3/z) + Bln(z —z) R}/R, < |z| < R3/R (43)

fuo(z) = £1.(2) + f30(z) = —Gp(R}/2) + Gp(R5/z) + BIn(R3/z — %) |z| > R3/R, (44)
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From Egs. (38) and (42), it is seen that
f1(z) = 2[M, + M3] "' MsBlIn(z — z9) + [M; + Ms]) "' [M5 — My]Gy (R2 /z)
+ My + M7 [My = M3|Gy (RS /2) 2] < Ry (45)
From Egs. (40) and (44), it is seen that
f3(z) = Bln(z — z9) + [M; + Ms] "' [M, — M3|BIn(R /z — Z5) + [M; + M5]™' My — M,]Gp(R2/z)
+ My + M7 [My = Mo|Gp(R}/2) |z > R, (46)

where superscript —1 denotes the inverse of the matrix.

Egs. (45) and (46) show that both complex potential f,(z) and f;(z) are related to the complex potential
f,(z) = Gy(z) + Gp(z). The remaining task is to determine the complex function vector f,(z). From Eqgs.
(39) and (43), the following equation can be derived:

{[M5 — My|[My + M3] "' [My — Ms] + [My + My]}Gp(2) + [My + M>)Gy(2)

+ [Ms — MMy + Ms] M Ml]cp<fgz> M Mﬂ@(’f) o MZ]G—N@%)

= {[Mz —Ml][Ml +M3]71[M1 —M3] + [M] +M3]}B1H(Z —Z()) (47)

Noting that

E NG
In(z — zp) = In(—zp) — —_— <> |z] < |zo] (48)
; k + 1 Zy

Neglecting the constant terms representing the rigid displacement and equipotential field, the substituting
Eq. (22) into Eq. (47) and comparison of the coefficient of the same power terms yields:

[M; + Mya, + [M; — My RIS =0 (49)
{[Ms — Mi][My + M3 "' [My — Mo] + [My + M) }by

- R 2(k+1) o
+[M3 _MIHMI +A4g] I[Mz—Ml]bk<R—l) +[M1 —M2]akR22<k+])
2

_ |
= —{[M5 — My][M; + M5]) "' [My — M5] + (M, +M3]}Bmzo e (50)
From Egs. (47) and (48), the explicit expressions of the coefficients a; and b, are easy to obtain
| 1 1 R% k+1
=M + M| M —M|II"Qb————| — 51
a, = M, + M| [M, 5] 2ni(k—|—1)(z_0> (51)
1
by = 17'Qb————z, " 52
¢ 2mi(k+1) 0 (52)
where

IT = {[M; — My][M; + Ms) "' [My — My)] + [My + Mo }RSTY + (M5 — My (M, + M) My — My R
+ [My — MMy + My) 7 My — Mo RIETY
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and,
-1 2(k+1)
Q= {[M — M5|[My + M5 [M, — M;] — [M, + M;]}R,

Now the complex function vectors f;(z), f2(z) and f3(z) have been determined by Eqgs. (45), (22) and (46).
The electroelastic field variables in the inclusion and the matrix can be evaluated by means of Egs. (11) and
(12).

As the special case, the solutions for a circular inclusion in the infinite matrix can be obtained by letting
M, = M, in Egs. (45), (22) and (46):

fi(z) =fa2(2) = % [My + M5]”' MsblIn(z — zo) (53)
f3(z) = %bln(z —zy) + ﬁ (M + Ms) ' (M, — Ms]bIn(R3/z — Z5) (54)

Egs. (53) and (54) are identical to the results in Kattis et al. (1998) and Liu et al. (2000).

4. Piezoelectric screw dislocation inside the inclusion

For a screw dislocation located at the point z = z; inside the inclusion, the complex function vectors can
be written as:

1
fi(z) ===bln(z —z) + f10(z) |z| <Ry (55)
2mi
1
fz(Z) = 2—mbln(z — Z()) + fz()(Z) R < |Z| <R, (56)
1
fi(z) = Ebln(z —20) +f30(2) |z[ > Ry (57)

where the complex function vectors f1y(z), fy(z) and f3(z) are holomorphic in the regions where they are
defined, respectively. fy(z) can be expanded into Laurent series:

fz()(Z) = GN(Z) + GP(Z) for R < |Z| <R, (58)

with Gy(z) = Y15 a,z %D and Gp(z) = >0 bz
Referring to Egs. (16)—(19), the four introduced complex function vectors can be written as:

1 R
fl*(Z) :%bln(zl—Z_o> +f1*0(2) |Z| > R1 (59)
£2.( ~ Lpm( P %) —Gyrys) - GrR? RI/R R 60
2« Z)_Zni nl—-= v(R/z) p(Ri/z) Ri/R» <lz| <R, (60)
1 R — _
f2..(2) = 2nibln<zz—z_o> —Gy(R3/2) — Gp(R3/2) R, < |z| < R3/R, (61)
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Using the similar method in the above section, the relations of the complex potentials f;(z) and f3(z) with
the complex potential f,(z) can be obtained:

f1(z) = Bln(z — z9) + [M; + M5]"' [My — M,|Bln(z — R2/Z5) + [M; + Ms]~' [M; — My|Bln(z — R2 /)
+ My + M) [M; — Ma|Gy (R} /2) + [My + M) [My — MGy (RS /2) 2] < Ry (63)
f3(z) = 2[M, + M3] 'MBln(z — zo) + [M; + M3] ' [Ms — My|Blnz + [M; + Ms) ™' [My — M;|Gp(R? /2)
+ My + M7 My — Mo|Gp(R}/2)  |2] > R, (64)
The complex potential f10(z) = Gy(z) + Gp(z) is determined by the following equations:
_ _ RZ
{IM; — M)[My + M3~ My — My] + [My + Ma]} + [Ms — My][My + Ms] ' [My — MI]GP(ITQZ>
2

+ [My + MGy (2) + [M, —Mz]G_p(If> + [M; — Mz]G_N(If)

= [Ml —Mz}Bh’l(l _Z;()) + {2[M3 —Ml][Ml +M3]71M1 +M1 —Mz}Blﬂ(l —;ig) (65)
2

Noting that

| (1 ZZO) vy ! (ZZ‘))HI for ||<‘ ; (66)
HECTA N o S L < | B
R} ~ k+1\R; Zo
and
Z0 _ - 1 Z0 k+1
ln(l—;)- ;Hl(z) for |z > |zo| (67)

The substituting Egs. (66), (67) and (59) into Eq. (65), and comparison of the coefficient of the same power
terms yields:

. 1
al = [My + M) ' [My — MyJb——— T

2mi(k +1)7°
+ [M +M }71[M _M ]H/—IQIb;Z(kJFI) & 2(k+1) (68)
e 2ri(k+ 1)  \ R,
b= ob— (2 " (69)
k= 2mi(k + 1) \ B2

where

2(k+1)
IT = {[M5 — My)[My + M5] ' [My — M) + [My + M)} + [Ms — My)[My + M3) ™' [My — M;] <R1>

2(k+1)
-1 R,
+ [My — M) [M; + M) [Mz—M1]<}T2)

and
Q = [My — M\][M, + M) [My — My) + 2[M, — M5][M, + Ms]™' M, — M, + M,
Now the complex function vectors f(z), f»(z) and f3(z) have been determined by Egs. (63), (58) and (64).
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At this point two special cases for the problem will be considered.
(a) Assuming M; = 0, Egs. (68) and (69) will be reduced to the solutions on the interaction between a

piezoelectric screw dislocation and a coated cylinder. In this case, IT' and €' can be expressed as fol-
low:

) R\ 26D
IT = 2M, + {[My — Mo][M; + My ' [My — My] + M, —Mﬁ(}é) (70)

Q = [My — M{][M, + M)~ [My — M) + My + M, (71)

(b) The solutions for a circular piezoelectric inclusion in the infinite piezoelectric matrix can be obtained by
letting M, = M5 (or M| = M,) in Egs. (63), (22) and (64):

1 1 _

f1(2) = 5=bln(z — 20) + 5~ [ + M;] '[M;y — My]bln(z — R} /=) (72)
1 _ 1 _

fg(Z) :%[Ml —|—M3] lMlbln(Z—Zo)—i—%[Ml +Mg] 1[M3 —Ml]ban (73)

In the absence of the piezoelectric coupling effect, the results of Egs. (72) and (73) are identical to those of
Smith (1968).

5. Image force on the dislocation

The image force (Hirth and Lothe, 1982) on the dislocation is an important physical parameter in
understanding electroelastic behavior of inhomogeneous material, especially in understanding the mobility
and so-called trapping mechanism of the dislocation. Additionally, it can be used to study the crack growth
in composites, as well as strengthening and hardening mechanisms in alloyed materials. The image force
can be evaluated by means of the generalized Peach—Koehler formula by Pak (1990).

F, —iF, = ib' (] - iX}) (74)
where ES and Eg denote the perturbation stress and electric displacement components at the dislocation

point.
Referring to the work by Qaissaunee and Santare (1995), we have

0 -5 0
r—ix)
= 1M[M + M) My — Ms]b 1 A iM [My 4 M)~ [My — M, IT' Qb il
= i 3 1 3 1 3 % —R%/Z_() Z i £ 3 1 3 2 1 Z_Ok+1zg+2
1 00 » X Ri(k‘f»l)
+2—M;M3[M1+M3] (M, — M]IT wa (75)
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for the dislocation in the matrix, and

1 1 1 1
20 i = — MM + M;] My — Mib———— + — M [M, + M5 [Ms — Myb——————
o~ B, = g MM+ Ma] (M, = MiJb o b 5 MM+ M| M = Malb e
. iM[M + My (M — M) [M, + My M, M]ngZT’H]
i 2 1M 3 3 2] M 2 1 2 Rf"“
L ST, M M — MM M M — M A
—Z |[My 4+ M5]7 (M3 — M) [My + Mo [M> — M, T,
2mi — R5
4L iM[M + M3 My — ME][M, + M) M, fM]bZ]‘;Z_Oﬁ
27_[1 v 1 1 3 2 3 1 2 1 2 R%kJrz
b iM (M + M3) "' [My — M3)[My + My [M: —M]H"IQ’ng%k+] R (76)
o 2 1M 3 2 3] M 2 2 1 Rz(k+l) 2
—| 1

for the dislocation in the inclusion.
The substitution of Egs. (75) and (76) into Eq. (74), the explicit expressions of the image force on the
piezoelectric screw dislocation can be obtained.

6. Examples and discussions

In this section, three examples are given to illustrate the influence of the interphase layer parameters on
the image force.

6.1. Three-phase elastic—dielectric inclusion

In this case, let us assume that piezoelectric constants within the inclusion, the interphase layer and the
matrix are zero, respectively (i.e. e(115) = e(125) = eg) =0, where and hereafter the superscripts 1, 2 and 3
represent the inclusion, the interphase layer and the matrix, respectively).

Assuming the piezoelectric screw dislocation is located at the point zy in the matrix, from Egs. (74) and

(75), one obtains

1 2 2 1
P g Koo, 1 1 (i - c)rre () - c)me
T T T Y e L e\ R 2 ch o c® + ch o c®
4 T Cy 2 4 T Cy 4 TCy
3 1 3)
2y (el + o) !
X
2 3 1 2 3 2 2 1 2k+2 Fok+1 k42
(Cz(m) + Ci4>) <C4<t4) + Cz(m)) + (Cz<14) - Cz(m)) (Cz(m) - C§4)) (RI/R2) 20 z’é
2 1 1 2
dl(‘:)b(zﬂ dﬁ) — dl(}) ( 1 1 ) (d1<1) - dl(l))R%]H—z (dl(l) - d1<1>>R§k+2
2| dy +df \2-R/7 2 dyy +dyy dyy +dy}
3 1 3
2d1(1) (dl(l) + dl(l)) 1

x )
(0 + ) (a0 + ) + () ) (4 — ) ey 51
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When the dislocation lies on the x-axis (zo = x¢, Xo > R;), the expression of Eq. (77) reduces to

T S (e L e
T2 ) el 4+ ) (o5 — RD)xo cl) +cl) cl) +c)
3 1 3
2Cf‘4) (Cz(m) + Cz(m)) 1

X
2 3 1 2 3 2 2 1 2k+2 y2k+3
(c+ ) (el + e + (e — ) (i - o) i /roy™ 5

2 1 1 2
ayey [y —ay m [(a7-dV)RE () - a?)Re
| dy +adfy) xolog — R dyy +dy dy) +d}
2df} (df)) +dfY) 1
2 ©) (1) ) 3) ) (2) 2k+2 xzk+z (78)
() +ad) (a) + ) + () = dfd) () = a) ) (R /R2)
=0 (79)

Above Egs. (78) and (79) indicate the image force component F, equals to zero and the screw dislocation
only moves along the x-axis when the dislocation lies on the x-axis. Further analyses imply that the
interphase layer geometry may be the dominant factor of the image force if the elastic—dielectric interphase
layer is extremely compliant or rigid. In addition, the location of the dislocation also has significant effect
on it.

Here, we may consider another case of piezoelectric inclusion with elastic interphase layer and elastic
matrix. Piezoelectric composites sensors are often designed in this configuration where a piezoelectric bar is
embedded into a surrounding elastic matrix (Sudak, 2003a,b; Deng and Meguid, 1999). In this case,
plezoelectrlc constants and dlelectrlc constants of the interphase and the matrix are zero respectively
(i.e. e(lzs) = e15 =0, al11 —dn = 0). Because the most general case of the piezoelectric inclusion with
the piezoelectric interphase layer and the piezoelectric matrix will be discussed in the next section, we omit
the details of the effect of the interphase layer parameters on the image force.

6.2. Piezoelectric inclusion with piezoelectric inter-phase layer and matrix

In this most general case let us assume the piezoelectric screw dislocation is located at the point zj in the
matrix or in the inclusion. From Egs. (74)—(76), one obtains

F, —iF,
Loy ,1 1 1\ | 1Sy i R
= 5 DM (M + M5 My — M -y, +ﬂ;b M;[M, + Ms) " [My — M| IT! QszA+2
1 2(k+1)
ZbTM; My + Ms) ' [My — Mo)IT- Qb +1 s (80)
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for the dislocation inside the matrix, and

! 1 1 1
F, —iF, = >—b"M[M M_lM—Mbi 5= DIMi[My + M) (M — MaJb——
1), o My + M) (M 1] Rz/zo 1[My + M) [ 3 5] Py
+L§:bTM [My + M) [Ms — My)[My + My~ (M, M]bzl‘;ZM
21 s 1 1 3 3 2 1 2 P R2k+2
LSy S . 1 o AT
+5- kZO:b MMy + M) [Ms — Mo)[My + M)~ (Mo — M) IT' Q' R
I S 4 » Z/(;Zk+1
"3 ;b M+ 0 s M+ 00— b
- . 2k R
Z bTM (M + Ms] ™ [My — M|[My + M| [My — M1~ 1Q’bW (81)
k= 2

for the dislocation inside the inclusion.

The corresponding image force on the dislocation for the problem of the interaction between a piezo-
electric screw dislocation in the infinite matrix and the circular piezoelectric inclusion can be obtained from
Eq. (80) which coincides with the result in Liu et al. (2000). Here we omit details for saving space.

If the dislocation lies on the x-axis (zy = xj), the expressions of Egs. (80) and (81) reduce to:

1 - . R% 1 [o'e] - | » R2(k+l)
——bMM+MM—Mb<7>+— bTM; M, + M;] ' [M Qb—L
o 3[ 1 3] [ 1 3] xo(x% —Rﬁ) o kz:(): 3[ 1 3} [ 2= } ék+3
1 R2<k+1)
T
+5- Zb MMy + Ms) "' [My — Mo T Qb =2 —— e (82)
E,=0 (83)
for the dislocation inside the matrix, and
1 -1 X0 1 T -1 X0
F.=—b"M[M, + M3]"'[M, — Mi]b——— + —b"M;[M; + M5]"'[M5 — My]b——"—
o 1 [My + M) (M 1] xé—R%+2n My + M) (M ] x%—R%
1 T O xék+l
T Zb MMy + M) [Ms — Mo)[My + My) M —MZ]bR%Hz
1 o0 T . | . 2k+l
- - /
+5- ;b MM, + M5 [Ms — My)[M + M)~ [My — My IT'~ QbR2k+2
1 0 - 4 4 xék+l
+5- ;b MMy + M;) ' [My — M3][M, + My) ' My — Mz}bng+2
0 B . k+1R (k+1)
Z b M, (M, + Ms) ' [My — M3)[My + My~ My — My ‘wa (84)
k= RZ
F,=0 (85)

for the dislocation inside the inclusion.
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FxO
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-1
-2
T T T T T T T T
1.0 1.5 2.0 25 3.0
Xo/R,

Fig. 3. Variation of the dislocation force in the matrix for various interphase layer elastic moduli. (M, = 5Mj3, eizs) = 9(135)’ R/R, =0.9,
Fo = (2nRy/CB2)F., on = € /CY).

FxO

. . . . .
1.0 15 2.0 2.5 3.0
Xo/Ro

Fig. 4. Variation of the dislocation force in the matrix for various interphase layer piezoelectric moduli. (M, = 5M;, Cﬁ) = Cft),
Ri/Ry = 0.9, Fyy = (21R, /C BV, By = €l [el?).

Now let us discuss the influence of the interphase layer parameters (electroelasticity modulus, thickness)

. . . . . b, 1.0 x 10 m
on the image force. Here we take the piezoelectric screw dislocation vector b = b (=V10V
0 .
(Lee et al., 2000). By means of Egs. (82) and (84), the influence of the interphase layer parameters on the
dislocation force are shown in Figs. 3-8.

Let us assume that matrix material is PZT-5H piezoelectric ceramics with the electroelastic properties:

Me— |353% 10" N/m? 17 C/m?
T 17 C/m? 1.51 x 108 C/Vm
and the dielectric modulusd!}’ = d\?. The variations of the dislocation force with respect to the location are

depicted in Fig. 3 for various interphase layer elastic modulus and in Fig. 4 for various interphase layer
piezoelectric modulus. It is seen that hard inclusion (Cﬂ‘) > Cﬁ)) and hard interphase layer (Cﬁ) > CA(‘Z))
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Fxo 1 —a—h=01
21 —e—h=0.05
— 4 h=0.03
. —v—h=0.01
Oa
14
24
T T T T T T T
1.0 1.5 2.0 25 3.0
Xg/Ro

Fig. 5. Varlatlon of the dislocation force in the matrix for various interphase layer thickness. (M, = 5Ms, Ci3 /C) = 0.2, {2 /e = 0.2,
Fo = (21R,/C)B2)Fe, h = (Ry — R))/Ry).

24 —a—0,=0.01
—o—0,=0.5
—A—0,y=5
—v—0,=100
-4 T T v T v T v T v
0.0 0.2 0.4 0.6 0.8 1.0
X/R,

Flg 6. le’ldtlon of the dlSlOCdthl’l force in the inclusion for various interphase layer elastic moduli. (M5 = 5M,, e,5 = e,5 ,Ri/R, =09,
= (2nR, /CY B))E,, a0y = C) /CY).

repel the plezoelectrlc screw dislocation in the matrix. The hard inclusion (C44 > C44) and the very soft
interphase layer (C}2) < C{))) may first attract the dislocation and then repel it with the increase of the
distance between the dislocation and the interphase layer. An interesting result is that, for not very soft
interphase, force on dislocation will be a large positive value when the dislocation approaches to the
interphase layer from infinity along with the x-axis. For various piezoelectric moduli, Parallel results can be
obtained in Figs. 4 and 5 illustrates the variation of the force on the dislocation located in the matrix with
respect to the location for various interphase layer thickness. Noticeable, for the Very thick inter?hase layer,
the force on the dislocation is always negative (attract dislocation) as C44 < C44 and e15 < e15 The dis-
location force is very large when the dislocation is closed to the mismatching interphase layer, whereas it
has dropped down to very small when the distance between the dislocation and the interphase layer goes up
to the double radius of the interphase layer.

Now let us assume that the inclusion material is PZT-5H piezoelectric ceramics with the electroelastic
properties:
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3 1 1 1 1

Fig. 7. Variation of the dislocation force in the inclusion for various interphase layer piezoelectric moduli. (M; = 5M,, C. 44) = Cﬁi’,
Ri/Ry =09, Fp = (2nR, /C44b§)39ﬁ2 15/ (115))

0.0 0.2 0.4 0.6 0.8 1.0
x /R

0

Flg 8. Variation of the dislocation force in the inclusion for various interphase layer thickness. (M; = 5M;, Cﬁ) /Cfult) =0.2,
615/615 702 Fx() (27TR|/C44bZ)F;,h_(R7—R1)/R]).

M, = 3.53 x 10! N/m? 17 C/m?
17 C/m? 1.51 x 1078 C/Vm

and the dielectric modulus dﬁ = dﬁ). The variations of the dislocation force in the inclusion with respect to
the location are depicted in Fig. 6 for various interphase layer elastic modulus and in Fig. 7 for various
interphase layer piezoelectric modulus. Similarly, it is seen that hard matrix (Cﬁ) > Cf‘:‘)) and hard inter-
phase layer (Cﬁ) <1>) repel the plezoelectrlc screw dislocation in the inclusion. The hard matrix
(Cﬁ) > Cﬂ)) and the soft interphase layer (C44 < C44 ) may first attract the dislocation and then repel it with
the increase of the distance between the dislocation and the interphase layer. For various piezoelectric
moduli, Parallel results can be obtained. Fig. 8§ illustrates the variation of the force on the dislocation
located in the inclusion with respect to the location for various interphase layer thickness. Similarly, for
very thlck 1nterphase layer, the force on the dislocation is always positive (attract dislocation) as C 44> < C44
and e15 < e1 ) The dislocation force is very large when the dislocation is closed to the mismatching inter-
phase layer, whereas it vanishes in the center of the inclusion.



3272 Y. W. Liu et al. | International Journal of Solids and Structures 41 (2004) 3255-3274

6.3. Interaction between a piezoelectric screw dislocation and a coated cylinder

A study on the interaction between a piezoelectric screw dislocation and a coated cylinder is useful in
understanding the influence of a coating and a surface-bonded piezoelectric membrane on the dislocation
force. In this case, let us assume piezoelectric, dielectric and elastic constants of the matrix are zero
(Cﬁ) = 9535) = dl(?) = (). Then the image force can be obtained from Eq. (75) for the case of the piezoelectric
screw dislocation located in the inclusion.

The variation of the image force in a coated cylinder with respect to the location are depicted in Fig. 9
for various interphase layer elastic modulus, in Fig. 10 for various interphase layer piezoelectric modulus
and in Fig. 11 for various interphase layer thickness. The above figures and further analysis imply that the
interphase electroelastic properties are the dominant factor of the image force on the dislocation for serious

mismatching.

—a—0,=1
24 —eo—0,=3
—A—(Q,=!
—v—0,=20
-3 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x /R

0

Fig. 9. Variation of the dislocation force in a coated cylinder for various coating elastic moduli. (M; = 0, e(lls) = eg?, R\/R, =09,
2
Fo = (27R, /Cly B)F,, on = CF) /CYY).

x /R,

0

Fig. 10. Variation of the dislocation force in a coated cylinder for various coating piezoelectric moduli. (M5 =0, Cﬁ) = Cﬂ),
Ri/Ry =09, Fg = (2nR1 [CyB)F,, By = eff /€}¥).
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Fo || —s—n=01

x./R

0

Fig. 11. Variation of the dislocation force in a coated cylinder for various coating thickness. (M; =0, Cﬁ) / C‘E? =10, ei? /(3515> = 10,
Fyo = (2nR, /Cyy B2)Fes h = (R, — Ry)/Ry).

7. Conclusions

An efficient method is developed for the BVP in multiplying connected regions, in terms of which the
analytical solutions are obtained for a piezoelectric screw dislocation interacting with an interphase layer
between the circular inclusion and the matrix. The results indicate that the interphase layer has significant
effects on the Peach—Koehler dislocation force. The obtained explicit solutions can be used as Green’s
functions to solve the problem of electroelastic interaction between the coated inclusion and the arbitrary
shape crack inside the matrix or inclusion under antiplane mechanical and inplane electric loadings at
infinity. In addition, it can be used to study the crack growth in composites, as well as strengthening and
hardening mechanisms in alloyed materials.
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