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Abstract

The interaction of a piezoelectric screw dislocation with an interphase layer between the circular inclusion and

the piezoelectric matrix is dealt with. An efficient method for multiplying connected region is developed by combin-

ing the sectional holomorphic function, Cauchy-type integral and Laurent series expansion techniques, in terms of

which the relation among the complex potentials for the three material regions is obtained. The functional equation in

complex potentials for the interphase layer is derived, resulting in explicit series solutions for the two cases when

piezoelectric screw dislocation is located in the matrix or in the inclusion. The image force acting on the piezoelectric

screw dislocation is calculated by using the generalized Peach–Koehler formula. Three practical cases are provided to

investigate the influence of the interphase layer parameters on the image force. The present solutions contain a number

of novel and previously known results which can be shown to be special cases.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The solution of the appropriate problem involving the interaction of dislocations with inclusions plays a

fundamental role in many practical and theoretical applications, namely, it increases the understanding of

material defects thereby providing valuable insight into the mechanical behavior of materials (Sudak,

2003a). All materials of engineering importance, from quenched and tempered steels to fiber or laminated

reinforced composites, are heterogeneous systems. The second phase inclusions or dispersed particles

provide barriers to the dislocation motion and thus affect the flow stress and strain hardening behavior of

the materials. With the daily emerging of new material systems, theoretical analysis becomes increasingly
valuable. In addition, it can be used to study the crack growth in composites, as well as strengthening and
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hardening mechanisms in alloyed materials. In view of its importance, a number of contributions have been

conducted on this problem during the last several decades, and the references listed herein (Dundurs and

Mura, 1964; Dundurs and Sendeckyj, 1965; Barnett and Tetelman, 1966; Smith, 1968; Sendeckj, 1970; Luo

and Chen, 1991; Gong and Meguid, 1994; Zhang and Qian, 1996; Xiao and Chen, 2000, 2001, 2002; Wang
and Shen, 2002; Sudak, 2003a; Liu et al., 2003; Jiang et al., 2003; Fang et al., 2003) are just some examples

of contributions in this area.

In recent years, piezoelectric materials have become an important branch of modern engineering

materials due to the fact that they have potentials for use in many modern devices and composite structures.

Their favorable electromechanical coupling effect presents a level of difficulty not found in designs and

analyses of mechanical behaviors of composite materials. The electroelastic interaction of dislocations and

inclusions plays a significant role in studying the electromechanical coupling behavior of piezoelectric

materials, and it is motivated rapidly in the fields of solid mechanics and materials science. As a result, a
considerable amount of attention has been paid to this problem. Kattis et al. (1998) investigated the

electro–elastic interaction effects of a piezoelectric screw dislocation with circular inclusion in piezoelectric

material. Meguid and Deng (1998) and Deng and Meguid (1999) considered the problem involving the

interaction between the piezoelectric elliptical inhomogeneity and a screw dislocation, which is located

inside or outside inhomogeneity under antiplane shear and in-plane electric field. The interaction between a

piezoelectric screw dislocation and elliptical inclusion is studied by Liu et al. (2000). Huang and Kuang

(2001) evaluated the generalized electromechanical force when the dislocation locates inside, outside or on

the interface of the elliptical inhomogeneity in a infinite piezoelectric media. The electroelastic interaction
between a piezoelectric screw dislocation, which is located either outside or inside inhomogeneity and

circular interfacial rigid lines under antiplane mechanical and in-plane electrical loads in linear piezoelectric

materials, is dealt with by Liu and Fang (2003).

In the above studies involving the electroelastic interaction of the dislocation with the inclusion in

piezoelectric solids, most analytical solutions are restricted to two-phase model, namely, the interfaces are

assumed as idealized ones with zero thickness. Due to the presence of materials such as fiber coating or

transitional layers between the inclusion and the matrix, it is more reasonable to regard an interface as

interphase layer with finite thickness. The importance of three-phase model (inclusion-interphase-matrix
model) in piezoelectric materials has been described by Sudak (2003b). Referring to the work by Liu et al.

(2003), this paper will focus on the electroelastic interaction of a piezoelectric screw dislocation with an

interphase layer between the circular inclusion and the infinite matrix.

The complex potentials (Muskhelishvili, 1975) are used to deal with the problem. For a three-phase

model (such as inclusion-interphase-matrix model), under remote homogeneous stress and electric fields,

closed form solutions can often be obtained (see, for example, Wang and Shen, 2001; Jiang et al., 2001;

Sudak, 2003b). However, for problems with singularities, mathematical difficulties are encountered. In this

paper an effective method for multiplying connected region is developed by combining the sectional holo-
morphic function, Cauchy-type integral and Laurent series expansion techniques. The relation among

the complex potentials for the three material regions is given and the functional equation in complex

potential for interphase layer is derived, resulting in explicit series solutions for the two cases when

the piezoelectric screw dislocation is located in the matrix or in the inclusion. The image force acting on the

piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. Finally, the

influence of the interphase layer parameters (electroelasticity modulus, thickness) on the dislocation force

is examined for three practical cases. Results presented in this paper contain the previous known solutions

as special cases. The obtained explicit solutions can be used as Green�s functions to solve the problem of
electroelastic interaction between the coated inclusion and the arbitrary shape crack inside the matrix or

the inclusion.
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2. Problem statement and basic formulation

Let us consider an infinite piezoelectric medium containing a circular inclusion and an annular interphase

layer, as shown in Fig. 1, where R1 and R2 are the inner and outer radii of the interphase annulus. The matrix,
inclusion and interphase layer are assumed to be transversely isotropic piezoelectric media which have been

poled along the z-direction with an isotropic xoy-plane. A piezoelectric screw dislocation b ¼ fbz; bugT (Pak,

1990; Liu et al., 2000) is located at arbitrary point z0, which is located either in the matrix or in the inclusion

(z0 is plotted in the matrix in Fig. 1). Where an interface exists between two dissimilar materials, we assume

perfect bonding. Additionally, we assume no mechanical and electric loads at infinity.

For the present problem, out-of-plane displacement and in-plane electric field need to be considered, so

that there are only non-trivial displacement w, strains cxz and cyz, stresses sxz and syz, electric potential u,
electrical field components Ex and Ey and electric displacement components Dx and Dy in the local Cartesian
coordinates. All components are only functions of x and y. The mechanical and electric coupled constitutive

relations (Tiersten, 1969) can be expressed as:
sxz ¼ C44

ow
ox

þ e15
ou
ox

syz ¼ C44

ow
oy

þ e15
ou
oy

ð1Þ
Dx ¼ e15
ow
ox

� d11
ou
ox

Dy ¼ e15
ow
oy

� d11
ou
oy

ð2Þ
where C44 is the longitudinal shear modulus at a constant electric field, e15 is the piezoelectric modulus, d11 is
the dielectric modulus at a constant stress field.

The equilibrium equation and charge equation can be reduced to the harmonic equations
r2w ¼ 0 r2u ¼ 0 ð3Þ
where r2 ¼ o2=ox2 þ o2=oy2 is the two-dimensional Laplace operator.

Referring to the work by Jiang et al. (2001), we introduce the vector of generalized displacement

U ¼ w
u

� �
. Substituting it into Eq. (3), we obtain
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Fig. 1. A piezoelectric screw dislocation interacting with the inclusion and interphase layer.
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r2U ¼ 0 ð4Þ

Introducing the following vectors of generalized stress and strain:
Rx ¼
sxz
Dx

� �
Ry ¼

syz
Dy

� �
ð5Þ

Yx ¼
cxz
�Ex

� �
Yy ¼

cyz
�Ey

� �
ð6Þ
By adopting the above notations and noting Ei ¼ �u;i, Eqs. (1) and (2) can be unified into
Rx ¼ MYx Ry ¼ MYy ð7Þ
where M ¼ C44 e15
e15 �d11

� �
:

Eq. (4) shows that the general solution of the generalized displacement vector U can be expressed by a

generalized analytical function vector fðzÞ, where z ¼ xþ iy is the complex variable.
U ¼ Re fðzÞ ð8Þ

where Re denotes the real part of the complex function, and
fðzÞ ¼ fwðzÞ
fuðzÞ

� �
ð9Þ
fwðzÞ and fuðzÞ are conventional analytical functions.
Considering Eq. (8), the constitutive relations Eq. (7) can be expressed as
Rx � iRy ¼ MFðzÞ ð10Þ

where FðzÞ ¼ f 0ðzÞ and the superscript prime denotes derivative with respect to argument z.

Hence, the mechanical stresses and the electric displacements can be expressed in terms of fwðzÞ and fuðzÞ
as follows:
sxz � isyz ¼ C44f 0
wðzÞ þ e15f 0

uðzÞ ð11Þ

Dx � Dy ¼ e15f 0
wðzÞ � d11f 0

uðzÞ ð12Þ
In order to facilitate the analysis, we introduce the following function vector:
T ¼
Z B

A

ðRx dy � Ry dxÞ ¼ MIm½fðzÞ�BA ð13Þ
where ½��BA is the change in the bracketed function vector in from point A to point B along any arc AB (not

pass through interfaces of dissimilar phase).

The assumption of perfect bonging between two adjacent materials implies the continuity of generalized

displacement and stress vectors across the interface, which leads to the following continuity conditions:
T1 ¼ T2 U1 ¼ U2 on jtj ¼ R1 ð14Þ

T2 ¼ T3 U2 ¼ U3 on jtj ¼ R2 ð15Þ

where and hereafter the subscripts 1, 2 and 3 refer to the inclusion, the interphase layer and the matrix,

respectively.
For the convenience of analysis, the following new analytical function vectors are introduced in the

corresponding region according to the Schwarz symmetry principle.
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f1�ðzÞ ¼ �f1ðR2
1=zÞ for jzj > R1 ð16Þ

f2�ðzÞ ¼ �f2ðR2
1=zÞ for R2

1=R2 < jzj < R1 ð17Þ

f2��ðzÞ ¼ �f2ðR2
2=zÞ for R2 < jzj < R2

2=R1 ð18Þ

f3�ðzÞ ¼ �f3ðR2
2=zÞ for jzj < R2 ð19Þ
where the overbar represents the complex conjugate.
3. Piezoelectric screw dislocation inside the matrix

Let us first analyze the singularities of the complex function vectors. If a piezoelectric dislocation is

located in the matrix, referring to Pak (1990) and Liu et al. (2000), the generalized analytical function vector

f3ðzÞ in the matrix can be chosen as:
f3ðzÞ ¼
1

2pi
b lnðz� z0Þ þ f30ðzÞ jzj > R2 ð20Þ
where the first term represents the complex potential for a piezoelectric screw dislocation in an infinite

matrix in the absence of the inclusion; the second term represents the disturbance of the complex potential

due to the presence of a circular inclusion and an interphase layer. The second term f30ðzÞ is holomorphic in

the region jzj > R2. From Eq. (19), it is seen that
f3�ðzÞ ¼
1

2pi
b ln

R2
2

z

�
� z0

�
þ f3�0ðzÞ jzj < R2 ð21Þ
where f3�0ðzÞ is holomorphic in the defined region.

Neglecting the constant terms denoting the rigid displacement and equipotential field, function vector

f2ðzÞ can be expanded into Laurent series in the annular region:
f2ðzÞ ¼ GN ðzÞ þGP ðzÞ for R1 < jzj < R2 ð22Þ

with GN ðzÞ ¼

P1
k¼0 akz

�ðkþ1Þ and GP ðzÞ ¼
P1

k¼0 bkz
kþ1.

The substitution of Eq. (22) into Eqs. (17) and (18) yields:
f2�ðzÞ ¼ �GN ðR2
1=zÞ �GP ðR2

1=zÞ for R2
1=R2 < jzj < R1 ð23Þ

f2��ðzÞ ¼ �GN ðR2
2=zÞ �GP ðR2

2=zÞ for R2 < jzj < R2
2=R1 ð24Þ
Obviously, f1ðzÞ is holomorphic in the region jzj < R1, and from Eq. (16), f1�ðzÞ is holomorphic in the

defined region.

The substitution of Eq. (13) into the first equation of Eqs. (14) and (15) yields:
M1bf1ðtÞ � f1ðtÞc ¼ M2bf2ðtÞ � f2ðtÞc on jtj ¼ R1 ð25Þ

M2bf2ðtÞ � f2ðtÞc ¼ M3bf3ðtÞ � f3ðtÞc on jtj ¼ R2 ð26Þ

Noting that tt ¼ R2

1 on jtj ¼ R1 and tt ¼ R2
2 on jtj ¼ R2, and using Eqs. (16)–(19), Eqs. (25) and (26) can be

rewritten as:
½M2f2�ðtÞ �M1f1ðtÞ þM3f3�ðtÞ�I ¼ ½M1f1�ðtÞ �M2f2ðtÞ þM3f3�ðtÞ�L on jtj ¼ R1 ð27Þ
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½M1f1�ðtÞ �M2f2ðtÞ þM3f3�ðtÞ�L ¼ ½M2f2��ðtÞ �M3f3ðtÞ þM1f1�ðtÞ�M on jtj ¼ R2 ð28Þ
where the superscript I, L and M refer to the function value as approached from the regions occupied by the

inclusion, the interphase layer and the matrix, respectively. Eqs. (27) and (28) imply that

½M2f2�ðzÞ �M1f1ðzÞ þM3f3�ðzÞ�, ½M1f1�ðzÞ �M2f2ðzÞ þM3f3�ðzÞ� and ½M2f2��ðzÞ �M3f3ðzÞ þM1f1�ðzÞ� are the

mutual direct analytical continuation, and they can be expressed by a continuous function vector fT ðzÞ:
fT ðzÞ ¼
M2f2�ðzÞ �M1f1ðzÞ þM3f3�ðzÞ R2

1=R2 < jzj < R1

M1f1�ðzÞ �M2f2ðzÞ þM3f3�ðzÞ R1 < jzj < R2

M2f2��ðzÞ �M3f3ðzÞ þM1f1�ðzÞ R2 < jzj < R2
2=R1

8<
: ð29Þ
Similarly, substituting Eq. (8) into the second equation of Eqs. (14) and (15) and considering Eqs. (16)–(19),

we obtain the expression of continuous function vector fU ðzÞ:
fU ðzÞ ¼
f1ðzÞ þ f2�ðzÞ þ f3�ðzÞ R2

1=R2 < jzj < R1

f1�ðzÞ þ f2ðzÞ þ f3�ðzÞ R1 < jzj < R2

f1�ðzÞ þ f2��ðzÞ þ f3ðzÞ R2 < jzj < R2
2=R1

8<
: ð30Þ
Noting Eqs. (29) and (30) and defining
fT ðzÞ ¼
M3f3�ðzÞ �M1f1ðzÞ jzj < R2

1=R2

M1f1�ðzÞ �M3f3ðzÞ jzj > R2
2=R1

�
ð31Þ

fU ðzÞ ¼
f1ðzÞ þ f3�ðzÞ jzj < R2

1=R2

f1�ðzÞ þ f3ðzÞ jzj > R2
2=R1

�
ð32Þ
where fT ðzÞ and fU ðzÞ are two sectional analytical function vectors with the contours as shown in Fig. 2 and
the boundary conditions:
fþT ðtÞ � f�T ðtÞ ¼
M2f2�ðtÞ jtj ¼ R2

1=R2

M2f2��ðtÞ jtj ¼ R2
2=R1

�
ð33Þ

fþU ðtÞ � f�U ðtÞ ¼
f2�ðtÞ jtj ¼ R2

1=R2

f2��ðtÞ jtj ¼ R2
2=R1

�
ð34Þ
where the superscript + and ) represent the function vectors boundary values as approached from regions

Sþ and S�, respectively, as shown in Fig. 2.
2

2
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Fig. 2. Internal boundaries for the sectional analytical function vectors.
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Now the problem is reduced to the boundary value problem of two sectionally analytical function

vectors fT ðzÞ and fU ðzÞ.
By using Eqs. (20)–(24), Eqs. (33) and (34) can be expressed as follows:
fþT0ðtÞ � f�T0ðtÞ ¼
�M2½GNðR2

1=tÞ þGP ðR2
1=tÞ� þM3B lnðR2

2=t � z0Þ jtj ¼ R2
1=R2

�M2½GNðR2
2=tÞ þGP ðR2

2=tÞ� �M3B lnðt � z0Þ jtj ¼ R2
2=R1

�
ð35Þ
and
fþU0ðtÞ � f�U0ðtÞ ¼
�½GN ðR2

1=tÞ þGP ðR2
1=tÞ� þ B lnðR2

2=t � z0Þ jtj ¼ R2
1=R2

�½GN ðR2
2=tÞ þGP ðR2

2=tÞ� þ B lnðt � z0Þ jtj ¼ R2
2=R1

�
ð36Þ� �
where B ¼ 1
2pi b ¼ 1

2pi

bz
bu

:

From Eq. (35), fT0ðzÞ can be represented by the Cauchy integrals:
fT0ðzÞ ¼
1

2pi

Z
jtj¼R2

1
=R2

�M2½GN ðR2
1=tÞ þGP ðR2

1=tÞ� þM3B lnðR2
2=t � z0Þ

t � z
dt

þ 1

2pi

Z
jtj¼R2

2
=R1

�M2½GN ðR2
2=tÞ þGP ðR2

2=tÞ� �M3B lnðt � z0Þ
t � z

dt ð37Þ
where the integration contours for the above Cauchy integrals are shown in Fig. 2.

According to Muskhelishvili (1975), Cauchy integrals on the right hand side of Eq. (35) can be integrated
in closed form:
fT0ðzÞ ¼ M3f3�0ðzÞ �M1f1ðzÞ ¼ M2GN ðR2
1=zÞ �M2GN ðR2

2=zÞ �M3B lnðz� z0Þ jzj < R2
1=R2 ð38Þ

fT0ðzÞ ¼ M2f2�ðzÞ �M1f1ðzÞ þM3f3�ðzÞ ¼ M1f1�ðzÞ �M2f2ðzÞ þM3f3�ðzÞ
¼ M2f2��ðzÞ �M3f3ðzÞ þM1f1�ðzÞ
¼ �M2GP ðR2

1=zÞ þM3B lnðR2
2=z� z0Þ �M2GN ðR2

2=zÞ �M3B lnðz� z0Þ R2
1=R2 < jzj < R2

2=R1

ð39Þ

fT0ðzÞ ¼ M1f1�ðzÞ �M3f30ðzÞ ¼ �M2GP ðR2
1=zÞ þM2GP ðR2

2=zÞ þM3B lnðR2
2=z� z0Þ jzj > R2

2=R1 ð40Þ
Similarly, Eq. (36) leads to
fU0ðzÞ ¼
1

2pi

Z
jtj¼R2

1
=R2

�½GNðR2
1=tÞ þGP ðR2

1=tÞ� þ B lnðR2
2=t � z0Þ

t � z
dt

þ 1

2pi

Z
jtj¼R2

2
=R1

�½GN ðR2
2=tÞ þGP ðR2

2=tÞ� þ B lnðt � z0Þ
t � z

dt ð41Þ
Further,
fU0ðzÞ ¼ f3�0ðzÞ þ f1ðzÞ ¼ GN ðR2
1=zÞ �GN ðR2

2=zÞ þ B lnðz� z0Þ jzj < R2
1=R2 ð42Þ

fU0ðzÞ ¼ f2�ðzÞ þ f1ðzÞ þ f3�ðzÞ ¼ f1�ðzÞ þ f2ðzÞ þ f3�ðzÞ ¼ f2��ðzÞ þ f3ðzÞ þ f1�ðzÞ
¼ �GP ðR2

1=zÞ þ B lnðR2
2=z� z0Þ �GN ðR2

2=zÞ þ B lnðz� z0Þ R2
1=R2 < jzj < R2

2=R1 ð43Þ

fU0ðzÞ ¼ f1�ðzÞ þ f30ðzÞ ¼ �GP ðR2
1=zÞ þGP ðR2

2=zÞ þ B lnðR2
2=z� z0Þ jzj > R2

2=R1 ð44Þ
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From Eqs. (38) and (42), it is seen that
f1ðzÞ ¼ 2½M1 þM3��1M3B lnðz� z0Þ þ ½M1 þM3��1½M3 �M2�GN ðR2
1=zÞ

þ ½M1 þM3��1½M2 �M3�GN ðR2
2=zÞ jzj < R1 ð45Þ
From Eqs. (40) and (44), it is seen that
f3ðzÞ ¼ B lnðz� z0Þ þ ½M1 þM3��1½M1 �M3�B lnðR2
2=z� z0Þ þ ½M1 þM3��1½M2 �M1�GP ðR2

1=zÞ
þ ½M1 þM3��1½M1 �M2�GP ðR2

2=zÞ jzj > R2 ð46Þ
where superscript )1 denotes the inverse of the matrix.
Eqs. (45) and (46) show that both complex potential f1ðzÞ and f3ðzÞ are related to the complex potential

f2ðzÞ ¼ GN ðzÞ þGP ðzÞ. The remaining task is to determine the complex function vector f2ðzÞ. From Eqs.

(39) and (43), the following equation can be derived:
f½M3 �M1�½M1 þM3��1½M1 �M2� þ ½M1 þM2�gGP ðzÞ þ ½M1 þM2�GN ðzÞ

þ ½M3 �M1�½M1 þM3��1½M2 �M1�GP
R2
1

R2
2

z
� �

þ ½M1 �M2�GP
R2
1

z

� �
þ ½M1 �M2�GN

R2
2

z

� �

¼ f½M3 �M1�½M1 þM3��1½M1 �M3� þ ½M1 þM3�gB lnðz� z0Þ ð47Þ
Noting that
lnðz� z0Þ ¼ lnð�z0Þ �
X1
k¼0

1

k þ 1

z
z0

� �kþ1

jzj < jz0j ð48Þ
Neglecting the constant terms representing the rigid displacement and equipotential field, the substituting

Eq. (22) into Eq. (47) and comparison of the coefficient of the same power terms yields:
½M1 þM2�ak þ ½M1 �M2�bkR2ðkþ1Þ
1 ¼ 0 ð49Þ

f½M3 �M1�½M1 þM3��1½M1 �M2� þ ½M1 þM2�gbk

þ ½M3 �M1�½M1 þM3��1½M2 �M1�bk
R1

R2

� �2ðkþ1Þ

þ ½M1 �M2�akR�2ðkþ1Þ
2

¼ �f½M3 �M1�½M1 þM3��1½M1 �M3� þ ½M1 þM3�gB
1

k þ 1
z�ðkþ1Þ
0 ð50Þ
From Eqs. (47) and (48), the explicit expressions of the coefficients ak and bk are easy to obtain
ak ¼ ½M1 þM2��1½M1 �M2�P�1Xb
1

2piðk þ 1Þ
R2
1

z0

� �kþ1

ð51Þ

bk ¼ P�1Xb
1

2piðk þ 1Þ z
�ðkþ1Þ
0 ð52Þ
where
P ¼ f½M3 �M1�½M1 þM3��1½M1 �M2� þ ½M1 þM2�gR2ðkþ1Þ
2 þ ½M3 �M1�½M1 þM3��1½M2 �M1�R2ðkþ1Þ

1

þ ½M2 �M1�½M1 þM2��1½M1 �M2�R2ðkþ1Þ
1
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and,
X ¼ f½M1 �M3�½M1 þM3��1½M1 �M3� � ½M1 þM3�gR2ðkþ1Þ
2

Now the complex function vectors f1ðzÞ, f2ðzÞ and f3ðzÞ have been determined by Eqs. (45), (22) and (46).

The electroelastic field variables in the inclusion and the matrix can be evaluated by means of Eqs. (11) and
(12).

As the special case, the solutions for a circular inclusion in the infinite matrix can be obtained by letting

M1 ¼ M2 in Eqs. (45), (22) and (46):
f1ðzÞ ¼ f2ðzÞ ¼
1

pi
½M1 þM3��1M3b lnðz� z0Þ ð53Þ

f3ðzÞ ¼
1

2pi
b lnðz� z0Þ þ

1

2pi
½M1 þM3��1½M1 �M3�b lnðR2

2=z� z0Þ ð54Þ
Eqs. (53) and (54) are identical to the results in Kattis et al. (1998) and Liu et al. (2000).
4. Piezoelectric screw dislocation inside the inclusion

For a screw dislocation located at the point z ¼ z0 inside the inclusion, the complex function vectors can

be written as:
f1ðzÞ ¼
1

2pi
b lnðz� z0Þ þ f10ðzÞ jzj < R1 ð55Þ

f2ðzÞ ¼
1

2pi
b lnðz� z0Þ þ f20ðzÞ R1 < jzj < R2 ð56Þ

f3ðzÞ ¼
1

2pi
b lnðz� z0Þ þ f30ðzÞ jzj > R2 ð57Þ
where the complex function vectors f10ðzÞ, f20ðzÞ and f30ðzÞ are holomorphic in the regions where they are

defined, respectively. f20ðzÞ can be expanded into Laurent series:
f20ðzÞ ¼ GN ðzÞ þGP ðzÞ for R1 < jzj < R2 ð58Þ

with GN ðzÞ ¼

P1
k¼0 a

0
kz

�ðkþ1Þ and GP ðzÞ ¼
P1

k¼0 b
0
kz

kþ1.

Referring to Eqs. (16)–(19), the four introduced complex function vectors can be written as:
f1�ðzÞ ¼
1

2pi
b ln

R1

z

�
� z0

�
þ f1 � 0ðzÞ jzj > R1 ð59Þ

f2�ðzÞ ¼
1

2pi
b ln

R1

z

�
� z0

�
�GN ðR2

1=zÞ �GP ðR2
1=zÞ R2

1=R2 < jzj < R1 ð60Þ

f2��ðzÞ ¼
1

2pi
b ln

R2

z

�
� z0

�
�GN ðR2

2=zÞ �GP ðR2
2=zÞ R2 < jzj < R2

2=R1 ð61Þ

f3�ðzÞ ¼
1

2pi
b ln

R2

z

�
� z0

�
þ f3�0ðzÞ jzj < R2 ð62Þ



3264 Y.W. Liu et al. / International Journal of Solids and Structures 41 (2004) 3255–3274
Using the similar method in the above section, the relations of the complex potentials f1ðzÞ and f3ðzÞ with
the complex potential f2ðzÞ can be obtained:
f1ðzÞ ¼ B lnðz� z0Þ þ ½M1 þM3��1½M2 �M1�B lnðz� R2
1=z0Þ þ ½M1 þM3��1½M3 �M2�B lnðz� R2

2=z0Þ

þ ½M1 þM3��1½M3 �M2�GN ðR2
1=zÞ þ ½M1 þM3��1½M2 �M3�GN ðR2

2=zÞ jzj < R1 ð63Þ

f3ðzÞ ¼ 2½M1 þM3��1M1B lnðz� z0Þ þ ½M1 þM3��1½M3 �M1�B lnzþ ½M1 þM3��1½M2 �M1�GP ðR2
1=zÞ

þ ½M1 þM3��1½M1 �M2�GP ðR2
2=zÞ jzj > R2 ð64Þ
The complex potential f20ðzÞ ¼ GN ðzÞ þGP ðzÞ is determined by the following equations:
f½M3 �M1�½M1 þM3��1½M1 �M2� þ ½M1 þM2�g þ ½M3 �M1�½M1 þM3��1½M2 �M1�GP
R2
1

R2
2

z
� �

þ ½M1 þM2�GN ðzÞ þ ½M1 �M2�GP
R2
1

z

� �
þ ½M1 �M2�GN

R2
2

z

� �

¼ ½M1 �M2�B ln 1
�

� z0
z

�
þ f2½M3 �M1�½M1 þM3��1M1 þM1 �M2gB ln 1

�
� zz0

R2
2

�
ð65Þ
Noting that
ln 1

�
� zz0

R2
2

�
¼ �

X1
k¼0

1

k þ 1

zz0
R2
2

� �kþ1

for jzj < R2
2

z0

				
				 ð66Þ
and
ln 1
�

� z0
z

�
¼ �

X1
k¼0

1

k þ 1

z0
z

� �kþ1

for jzj > jz0j ð67Þ
The substituting Eqs. (66), (67) and (59) into Eq. (65), and comparison of the coefficient of the same power

terms yields:
a0k ¼ ½M1 þM2��1½M2 �M1�b
1

2piðk þ 1Þ z
ðkþ1Þ
0

þ ½M1 þM2��1½M1 �M2�P0�1X0b
1

2piðk þ 1Þ z
ðkþ1Þ
0

R1

R2

� �2ðkþ1Þ

ð68Þ

b0k ¼ P0�1X0b
1

2piðk þ 1Þ
z0
R2
2

� �kþ1

ð69Þ
where
P0 ¼ f½M3 �M1�½M1 þM3��1½M1 �M2� þ ½M1 þM2�g þ ½M3 �M1�½M1 þM3��1½M2 �M1�
R1

R2

� �2ðkþ1Þ

þ ½M1 �M2�½M1 þM2��1½M2 �M1�
R1

R2

� �2ðkþ1Þ
and
X0 ¼ ½M2 �M1�½M1 þM2��1½M1 �M2� þ 2½M1 �M3�½M1 þM3��1M1 �M1 þM2
Now the complex function vectors f1ðzÞ, f2ðzÞ and f3ðzÞ have been determined by Eqs. (63), (58) and (64).
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At this point two special cases for the problem will be considered.

(a) Assuming M3 ¼ 0, Eqs. (68) and (69) will be reduced to the solutions on the interaction between a

piezoelectric screw dislocation and a coated cylinder. In this case, P0 and X0 can be expressed as fol-
low:
P0 ¼ 2M2 þ f½M1 �M2�½M1 þM2��1½M2 �M1� þM1 �M2g
R1

R2

� �2ðkþ1Þ

ð70Þ

X0 ¼ ½M2 �M1�½M1 þM2��1½M1 �M2� þM1 þM2 ð71Þ
(b) The solutions for a circular piezoelectric inclusion in the infinite piezoelectric matrix can be obtained by

letting M2 ¼ M3 (or M1 ¼ M2) in Eqs. (63), (22) and (64):
f1ðzÞ ¼
1

2pi
b lnðz� z0Þ þ

1

2pi
½M1 þM3��1½M2 �M1�b lnðz� R2

1=z0Þ ð72Þ

f3ðzÞ ¼
1

2pi
½M1 þM3��1M1b lnðz� z0Þ þ

1

2pi
½M1 þM3��1½M3 �M1�b lnz ð73Þ
In the absence of the piezoelectric coupling effect, the results of Eqs. (72) and (73) are identical to those of
Smith (1968).
5. Image force on the dislocation

The image force (Hirth and Lothe, 1982) on the dislocation is an important physical parameter in

understanding electroelastic behavior of inhomogeneous material, especially in understanding the mobility

and so-called trapping mechanism of the dislocation. Additionally, it can be used to study the crack growth
in composites, as well as strengthening and hardening mechanisms in alloyed materials. The image force

can be evaluated by means of the generalized Peach–Koehler formula by Pak (1990).
Fx � iFy ¼ ibTðR0
x � iR0

yÞ ð74Þ
where R0
x and R0

y denote the perturbation stress and electric displacement components at the dislocation
point.

Referring to the work by Qaissaunee and Santare (1995), we have
R0
x � iR0

y

¼ 1

2pi
M3½M1 þM3��1½M1 �M3�b

1

z0 �R2
2=z0

�
� 1

z0

�
þ 1

2pi

X1
k¼0

M3½M1 þM3��1½M2 �M1�P�1Xb
R2ðkþ1Þ
1

z0kþ1zkþ2
0

þ 1

2pi

X1
k¼0

M3½M1 þM3��1½M1 �M2�P�1Xb
R2ðkþ1Þ
2

z0kþ1zkþ2
0

ð75Þ
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for the dislocation in the matrix, and
R0
x � iR0

y ¼
1

2pi
M1½M1 þM3��1½M2 �M1�b

1

z0 � R2
1=z0

þ 1

2pi
M1½M1 þM3��1½M3 �M2�b

1

z0 � R2
2=z0

þ 1

2pi

X1
k¼0

M1½M1 þM3��1½M3 �M2�½M1 þM2��1½M1 �M2�b
zk0z0

kþ1

R2kþ2
1

þ 1

2pi

X1
k¼0

M1½M1 þM3��1½M3 �M2�½M1 þM2��1½M2 �M1�P0�1X0b
zk0z0

kþ1

R2kþ2
2

þ 1

2pi

X1
k¼0

M1½M1 þM3��1½M2 �M3�½M1 þM2��1½M1 �M2�b
zk0z0

kþ1

R2kþ2
2

þ 1

2pi

X1
k¼0

M1½M1 þM3��1½M2 �M3�½M1 þM2��1½M2 �M1�P0�1X0b
zk0z0

kþ1

R2ðkþ1Þ
1

R2ð2kþ2Þ
2 ð76Þ
for the dislocation in the inclusion.

The substitution of Eqs. (75) and (76) into Eq. (74), the explicit expressions of the image force on the

piezoelectric screw dislocation can be obtained.
6. Examples and discussions

In this section, three examples are given to illustrate the influence of the interphase layer parameters on
the image force.

6.1. Three-phase elastic–dielectric inclusion

In this case, let us assume that piezoelectric constants within the inclusion, the interphase layer and the

matrix are zero, respectively (i.e. eð1Þ15 ¼ eð2Þ15 ¼ eð3Þ15 ¼ 0, where and hereafter the superscripts 1, 2 and 3

represent the inclusion, the interphase layer and the matrix, respectively).

Assuming the piezoelectric screw dislocation is located at the point z0 in the matrix, from Eqs. (74) and
(75), one obtains
Fx � iFy ¼
Cð3Þ

44 b
2
z

2p
Cð1Þ

44 � Cð3Þ
44

Cð1Þ
44 þ Cð3Þ

44

1

z0 � R2
2=z0

�8<
: � 1

z0

�
þ

Cð1Þ
44 � Cð2Þ

44

� �
R2kþ2
1

Cð1Þ
44 þ Cð3Þ

44

2
4 þ

Cð2Þ
44 � Cð1Þ

44

� �
R2kþ2
2

Cð1Þ
44 þ Cð3Þ

44

3
5

�
2Cð3Þ

44 Cð1Þ
44 þ Cð3Þ

44

� �

Cð2Þ
44 þ Cð3Þ

44

� �
Cð1Þ

44 þ Cð2Þ
44

� �
þ Cð3Þ

44 � Cð2Þ
44

� �
Cð2Þ

44 � Cð1Þ
44

� �
ðR1=R2Þ2kþ2

1

z0kþ1zkþ2
0

9=
;

þ
dð3Þ
11 b

2
u

2p
dð3Þ
11 � dð1Þ

11

dð1Þ
11 þ dð3Þ

11

1

z0 � R2
2=z0

�8<
: � 1

z0

�
þ

dð2Þ
11 � dð1Þ

11

� �
R2kþ2
1

dð1Þ
11 þ dð3Þ

11

2
4 þ

dð1Þ
11 � dð2Þ

11

� �
R2kþ2
2

dð1Þ
11 þ dð3Þ

11

3
5

�
2dð3Þ

11 dð1Þ
11 þ dð3Þ

11

� �

dð2Þ
11 þ dð3Þ

11

� �
dð1Þ
11 þ dð2Þ

11

� �
þ dð3Þ

11 � dð2Þ
11

� �
dð2Þ
11 � dð1Þ

11

� �
ðR1=R2Þ2kþ2

1

z0kþ1zkþ2
0

9=
; ð77Þ
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When the dislocation lies on the x-axis (z0 ¼ x0, x0 > R2), the expression of Eq. (77) reduces to
Fx ¼
Cð3Þ

44 b
2
z

2p
Cð1Þ

44 � Cð3Þ
44

Cð1Þ
44 þ Cð3Þ

44

R2
2

x20 � R2
2ð Þx0

8<
: þ

Cð1Þ
44 � Cð2Þ

44

� �
R2kþ2
1

Cð1Þ
44 þ Cð3Þ

44

2
4 þ

Cð2Þ
44 � Cð1Þ

44

� �
R2kþ2
2

Cð1Þ
44 þ Cð3Þ

44

3
5

�
2Cð3Þ

44 Cð1Þ
44 þ Cð3Þ

44

� �

Cð2Þ
44 þ Cð3Þ

44

� �
Cð1Þ

44 þ Cð2Þ
44

� �
þ Cð3Þ

44 � Cð2Þ
44

� �
Cð2Þ

44 � Cð1Þ
44

� �
ðR1=R2Þ2kþ2

1

x2kþ3
0

9=
;

þ
dð3Þ
11 b

2
u

2p
dð3Þ
11 � dð1Þ

11

dð1Þ
11 þ dð3Þ

11

R2
2

x0 x20 � R2
2ð Þ

8<
: þ

dð2Þ
11 � dð1Þ

11

� �
R2kþ2
1

dð1Þ
11 þ dð3Þ

11

2
4 þ

dð1Þ
11 � dð2Þ

11

� �
R2kþ2
2

dð1Þ
11 þ dð3Þ

11

3
5

2dð3Þ
11 dð1Þ

11 þ dð3Þ
11

� �

dð2Þ
11 þ dð3Þ

11

� �
dð1Þ
11 þ dð2Þ

11

� �
þ dð3Þ

11 � dð2Þ
11

� �
dð2Þ
11 � dð1Þ

11

� �
ðR1=R2Þ2kþ2

1

x2kþ3
0

9=
; ð78Þ

Fy ¼ 0 ð79Þ
Above Eqs. (78) and (79) indicate the image force component Fy equals to zero and the screw dislocation

only moves along the x-axis when the dislocation lies on the x-axis. Further analyses imply that the

interphase layer geometry may be the dominant factor of the image force if the elastic–dielectric interphase
layer is extremely compliant or rigid. In addition, the location of the dislocation also has significant effect

on it.

Here, we may consider another case of piezoelectric inclusion with elastic interphase layer and elastic

matrix. Piezoelectric composites sensors are often designed in this configuration where a piezoelectric bar is

embedded into a surrounding elastic matrix (Sudak, 2003a,b; Deng and Meguid, 1999). In this case,

piezoelectric constants and dielectric constants of the interphase and the matrix are zero respectively

(i.e. eð2Þ15 ¼ eð3Þ15 ¼ 0, dð2Þ
11 ¼ dð3Þ

11 ¼ 0). Because the most general case of the piezoelectric inclusion with

the piezoelectric interphase layer and the piezoelectric matrix will be discussed in the next section, we omit
the details of the effect of the interphase layer parameters on the image force.
6.2. Piezoelectric inclusion with piezoelectric inter-phase layer and matrix

In this most general case let us assume the piezoelectric screw dislocation is located at the point z0 in the

matrix or in the inclusion. From Eqs. (74)–(76), one obtains
Fx � iFy

¼ 1

2p
bTM3½M1 þM3��1½M1 �M3�b

1

z0 � R2
2=z0

�
� 1

z0

�
þ 1

2p

X1
k¼0

bTM3½M1 þM3��1½M2 �M1�P�1Xb
R2ðkþ1Þ
1

z0kþ1zkþ2
0

þ 1

2p

X1
k¼0

bTM3½M1 þM3��1½M1 �M2�P�1Xb
R2ðkþ1Þ
2

z0kþ1zkþ2
0

ð80Þ
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for the dislocation inside the matrix, and
Fx � iFy ¼
1

2p
bTM1½M1 þM3��1½M2 �M1�b

1

z0 � R2
1=z0

þ 1

2pi
bTM1½M1 þM3��1½M3 �M2�b

1

z0 � R2
2=z0

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M3 �M2�½M1 þM2��1½M1 �M2�b
zk0�z

kþ1
0

R2kþ2
1

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M3 �M2�½M1 þM2��1½M2 �M1�P0�1X0b
zk0�z

kþ1
0

R2kþ2
2

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M2 �M3�½M1 þM2��1½M1 �M2�b
zk0�z

kþ1
0

R2kþ2
2

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M2 �M3�½M1 þM2��1½M2 �M1�P0�1X0b
zk0�z

kþ1
0 R2ðkþ1Þ

1

R2ð2kþ2Þ
2

ð81Þ
for the dislocation inside the inclusion.

The corresponding image force on the dislocation for the problem of the interaction between a piezo-

electric screw dislocation in the infinite matrix and the circular piezoelectric inclusion can be obtained from
Eq. (80) which coincides with the result in Liu et al. (2000). Here we omit details for saving space.

If the dislocation lies on the x-axis (z0 ¼ x0), the expressions of Eqs. (80) and (81) reduce to:
Fx ¼
1

2p
bTM3½M1 þM3��1½M1 �M3�b

R2
2

x0ðx20 � R2
2Þ

� �
þ 1

2p

X1
k¼0

bTM3½M1 þM3��1½M2 �M1�P�1Xb
R2ðkþ1Þ
1

x2kþ3
0

þ 1

2p

X1
k¼0

bTM3½M1 þM3��1½M1 �M2�P�1Xb
R2ðkþ1Þ
2

x2kþ3
0

ð82Þ

Fy ¼ 0 ð83Þ
for the dislocation inside the matrix, and
Fx ¼
1

2p
bTM1½M1 þM3��1½M2 �M1�b

x0
x20 � R2

1

þ 1

2p
bTM1½M1 þM3��1½M3 �M2�b

x0
x20 � R2

2

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M3 �M2�½M1 þM2��1½M1 �M2�b
x2kþ1
0

R2kþ2
1

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M3 �M2�½M1 þM2��1½M2 �M1�P0�1X0b
x2kþ1
0

R2kþ2
2

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M2 �M3�½M1 þM2��1½M1 �M2�b
x2kþ1
0

R2kþ2
2

þ 1

2p

X1
k¼0

bTM1½M1 þM3��1½M2 �M3�½M1 þM2��1½M2 �M1�P0�1X0b
x2kþ1
0 R2ðkþ1Þ

1

R2ð2kþ2Þ
2

ð84Þ

Fy ¼ 0 ð85Þ
for the dislocation inside the inclusion.
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Now let us discuss the influence of the interphase layer parameters (electroelasticity modulus, thickness)

on the image force. Here we take the piezoelectric screw dislocation vector b ¼ bz
bu

� �
¼ 1:0� 10�9 m

1:0 V

� �

(Lee et al., 2000). By means of Eqs. (82) and (84), the influence of the interphase layer parameters on the

dislocation force are shown in Figs. 3–8.

Let us assume that matrix material is PZT-5H piezoelectric ceramics with the electroelastic properties:
M3 ¼ 3:53� 1010 N=m2 17 C=m2

17 C=m2 1:51� 10�8 C=Vm

� �
and the dielectric modulusdð1Þ
11 ¼ dð2Þ

11 . The variations of the dislocation force with respect to the location are

depicted in Fig. 3 for various interphase layer elastic modulus and in Fig. 4 for various interphase layer

piezoelectric modulus. It is seen that hard inclusion (Cð1Þ
44 > Cð3Þ

44 ) and hard interphase layer (Cð2Þ
44 > Cð3Þ

44 )
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repel the piezoelectric screw dislocation in the matrix. The hard inclusion (Cð1Þ
44 > Cð3Þ

44 ) and the very soft

interphase layer (Cð2Þ
44 � Cð3Þ

44 ) may first attract the dislocation and then repel it with the increase of the

distance between the dislocation and the interphase layer. An interesting result is that, for not very soft

interphase, force on dislocation will be a large positive value when the dislocation approaches to the

interphase layer from infinity along with the x-axis. For various piezoelectric moduli, Parallel results can be

obtained in Figs. 4 and 5 illustrates the variation of the force on the dislocation located in the matrix with

respect to the location for various interphase layer thickness. Noticeable, for the very thick interphase layer,

the force on the dislocation is always negative (attract dislocation) as Cð2Þ
44 < Cð3Þ

44 and eð2Þ15 < eð3Þ15 . The dis-
location force is very large when the dislocation is closed to the mismatching interphase layer, whereas it

has dropped down to very small when the distance between the dislocation and the interphase layer goes up

to the double radius of the interphase layer.

Now let us assume that the inclusion material is PZT-5H piezoelectric ceramics with the electroelastic

properties:
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Fig. 7. Variation of the dislocation force in the inclusion for various interphase layer piezoelectric moduli. (M3 ¼ 5M1, C
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Fig. 8. Variation of the dislocation force in the inclusion for various interphase layer thickness. (M3 ¼ 5M1, Cð2Þ
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M1 ¼ 3:53� 1010 N=m2 17 C=m2

17 C=m2 1:51� 10�8 C=Vm

� �
and the dielectric modulus dð2Þ
11 ¼ dð3Þ

11 . The variations of the dislocation force in the inclusion with respect to

the location are depicted in Fig. 6 for various interphase layer elastic modulus and in Fig. 7 for various

interphase layer piezoelectric modulus. Similarly, it is seen that hard matrix (Cð3Þ
44 > Cð1Þ

44 ) and hard inter-

phase layer (Cð2Þ
44 > Cð1Þ

44 ) repel the piezoelectric screw dislocation in the inclusion. The hard matrix

(Cð3Þ
44 > Cð1Þ

44 ) and the soft interphase layer (Cð2Þ
44 < Cð1Þ

44 ) may first attract the dislocation and then repel it with
the increase of the distance between the dislocation and the interphase layer. For various piezoelectric

moduli, Parallel results can be obtained. Fig. 8 illustrates the variation of the force on the dislocation

located in the inclusion with respect to the location for various interphase layer thickness. Similarly, for

very thick interphase layer, the force on the dislocation is always positive (attract dislocation) as Cð2Þ
44 < Cð1Þ

44

and eð2Þ15 < eð1Þ15 .The dislocation force is very large when the dislocation is closed to the mismatching inter-

phase layer, whereas it vanishes in the center of the inclusion.
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6.3. Interaction between a piezoelectric screw dislocation and a coated cylinder

A study on the interaction between a piezoelectric screw dislocation and a coated cylinder is useful in

understanding the influence of a coating and a surface-bonded piezoelectric membrane on the dislocation
force. In this case, let us assume piezoelectric, dielectric and elastic constants of the matrix are zero

(Cð3Þ
44 ¼ eð3Þ15 ¼ dð3Þ

11 ¼ 0). Then the image force can be obtained from Eq. (75) for the case of the piezoelectric

screw dislocation located in the inclusion.

The variation of the image force in a coated cylinder with respect to the location are depicted in Fig. 9

for various interphase layer elastic modulus, in Fig. 10 for various interphase layer piezoelectric modulus

and in Fig. 11 for various interphase layer thickness. The above figures and further analysis imply that the

interphase electroelastic properties are the dominant factor of the image force on the dislocation for serious

mismatching.
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Fig. 9. Variation of the dislocation force in a coated cylinder for various coating elastic moduli. (M3 ¼ 0, eð1Þ15 ¼ eð2Þ15 , R1=R2 ¼ 0:9,

Fx0 ¼ ð2pR1=C
ð1Þ
44 b

2
z ÞFx, a2 ¼ Cð2Þ

44 =C
ð1Þ
44 ).

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

3
β
β
β
β

2
=1

2
=3

2
=5

2
=20

Fx0

x0/R1

Fig. 10. Variation of the dislocation force in a coated cylinder for various coating piezoelectric moduli. (M3 ¼ 0, Cð2Þ
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7. Conclusions

An efficient method is developed for the BVP in multiplying connected regions, in terms of which the

analytical solutions are obtained for a piezoelectric screw dislocation interacting with an interphase layer

between the circular inclusion and the matrix. The results indicate that the interphase layer has significant

effects on the Peach–Koehler dislocation force. The obtained explicit solutions can be used as Green�s
functions to solve the problem of electroelastic interaction between the coated inclusion and the arbitrary

shape crack inside the matrix or inclusion under antiplane mechanical and inplane electric loadings at

infinity. In addition, it can be used to study the crack growth in composites, as well as strengthening and

hardening mechanisms in alloyed materials.
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